For Math Grade 8, a one-credit course, instruction should focus on
in two different ways. They apply the Pythagorean Theorem to find distances between points on the coordinate plane, to find lengths, and to analyze polygons. Students complete their work on volume by solving problems involving cones, cylinders, and spheres.

The content of this document is centered on the mathematics domains of (Grade K), (Grades K-5);
(Grades 3-5);
(Grades K-5); (Grades 6-
7);
(Grades 6-8);
(Grade 8), and the high school conceptual categories of , and
. Instruction in these domains and conceptual categories should be designed to

8.F. 5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
8.G. 1	Verify experimentally the properties of rotations, reflections, and translations a. Lines are taken to lines, and line segments to line segments of the same length. b. Angles are taken to angles of the same measure. c. Parallel lines are taken to parallel lines.
8.G. 2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
8.G. 3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
8.G. 4	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
8.G. 5	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.
8.G.6	Explain a proof of the Pythagorean Theorem and its converse.
8.G. 7	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld and mathematical problems in two and three dimensions.
8.G.8	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
8.G. 9	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
8.SP. 1	Construct and interpret scatter plots for bivariate measurement data to investigate pattems of association between two quantities. Describe patterns such as c

8.SP. 2	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
Use the equation of a linear model to solve problems in the context of bivariate measurement	
8.SP.3	

